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BACKGROUND: Large numbers of chemicals require evaluation to determine if their production and use pose potential risks to ecological and human
health. For most chemicals, the inadequacy and uncertainty of chemical-specific data severely limit the application of exposure- and risk-based meth-
ods for screening-level assessments, priority setting, and effective management.
OBJECTIVE: We developed and evaluated a holistic, mechanistic modeling framework for ecological and human health assessments to support the
safe and sustainable production, use, and disposal of organic chemicals.
METHODS:We consolidated various models for simulating the PROduction-To-EXposure (PROTEX) continuum with empirical data sets and models
for predicting chemical property and use function information to enable high-throughput (HT) exposure and risk estimation. The new PROTEX-HT
framework calculates exposure and risk by integrating mechanistic computational modules describing chemical behavior and fate in the socioeco-
nomic system (i.e., life cycle emissions), natural and indoor environments, various ecological receptors, and humans. PROTEX-HT requires only mo-
lecular structure and chemical tonnage (i.e., annual production or consumption volume) as input information. We evaluated the PROTEX-HT
framework using 95 organic chemicals commercialized in the United States and demonstrated its application in various exposure and risk assessment
contexts.
RESULTS: Seventy-nine percent and 97% of the PROTEX-HT human exposure predictions were within one and two orders of magnitude, respectively,
of independent human exposure estimates inferred from biomonitoring data. PROTEX-HT supported screening and ranking chemicals based on vari-
ous exposure and risk metrics, setting chemical-specific maximum allowable tonnage based on user-defined toxicological thresholds, and identifying
the most relevant emission sources, environmental media, and exposure routes of concern in the PROTEX continuum. The case study shows that high
chemical tonnage did not necessarily result in high exposure or health risks.
CONCLUSION: Requiring only two chemical-specific pieces of information, PROTEX-HT enables efficient screening-level evaluations of existing and
premanufacture chemicals in various exposure- and risk-based contexts. https://doi.org/10.1289/EHP9372

Introduction
More than 350,000 chemicals and mixtures have been registered
in national and regional chemical inventories (Wang et al. 2020),
amounting to global annual chemical sales of about 3.7 trillion
Euros (European Chemical Industrial Council 2021). Although
chemical production and use bring significant socioeconomic
benefits and value, some exposures may also pose unacceptable
risks to humans and ecological receptors. Regulations such as the
U.S. Lautenberg Chemical Safety Act (i.e., LCSA 2016) (U.S.
Congress 2016), the Canadian Environmental Protection Act
(i.e., CEPA 1999) (Government of Canada 1999), and the
European Registration, Evaluation Authorisation and Restriction
of Chemicals (REACH) regulation (EC 2007) seek to evaluate
and manage chemicals to ensure their safe production, use, and
disposal. The large number of chemicals in commerce necessi-
tates screening and priority setting for those posing the highest
impacts on the environment and human health. Models are

critical to this task because it is not feasible to measure concen-
trations of tens of thousands of chemicals in the multimedia envi-
ronment, in organisms, and in human tissues.

Exposure science encompasses analyses of the chemical life
cycle, emission and mode of entry, fate and transport in various
environments, exposure factors relating receptor behavior tomulti-
media contact, and external and internal exposures (NRC 2012;
National Academies of Sciences, Engineering, and Medicine
2017). These components constitute a PROduction-To-EXposure
(PROTEX) continuum. Models for exposure and risk estimation
may comprise the entire continuum or integrate one or more com-
ponents of this spectrum. In its entirety such a model would allow
users to examine how exposure and risk respond to changes in
chemical production or use patterns to inform chemical manage-
ment, for example, product development, proposed new uses, risk
mitigation. The European Union System for the Evaluation of
Substances (EUSES) provided the first effort to characterize the
PROTEX continuum given that it supports the quantification of
chemical exposure and risks for humans and several ecological
receptors (Vermeire et al. 1997, 2005). However, EUSES has lim-
ited coverage for environmental compartments, exposure routes,
and ecological receptors, with a prominent limitation being the
lack of capacity to characterize human exposure to chemicals used
and released indoors (Undeman and McLachlan 2011; van de
Meent et al. 2014). The USEtox model provides more complete
insights into exposure and health impacts because it integratesmul-
tiroute exposures from indoor or near-consumer environments
(i.e., near-field) and the ambient environment distant from con-
sumers (i.e., far-field) (Rosenbaum et al. 2008, 2011); however, it
has limited ecological coverage. The PROTEX model (Li et al.
2018a, 2018b) supports mechanistic, time-variant simulations of
chemical emissions, fate, and concentrations in indoor, urban, and
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rural environments, as well as exposures of humans and other
organisms. However, PROTEX is data and resource intensive; its
dynamic nature is designed for higher-tiered comprehensive
assessments and is not ideal for high-throughput (HT) screening
applications. Efforts to combine different models for HT exposure
and risk estimation include the ExpoDat initiative (Shin et al.
2015) and the U.S. Environmental Protection Agency (EPA)’s
Systematic Empirical Evaluation of Models (SEEM) as part of the
ExpoCast program (Ring et al. 2019; Wambaugh et al. 2013,
2014). The SEEM3 framework integrates the results of several ex-
posure models and calibrates the consensus predictions to human
exposure estimates for 114 chemicals in the U.S. population
inferred from biomonitoring data, whereby it provides HT human
exposure rates for more than 500,000 chemicals (Ring et al. 2019).
However, SEEM does not provide mechanistic insights into the
relationships between individual components in the PROTEX con-
tinuum and how they are related to various physical, chemical,
physiological, behavioral, and social factors. There is a need for a
holistic, mechanistic modeling framework that accounts for aggre-
gate exposure to humans and ecological receptors relating directly
to production for HT assessments.

The general paucity of chemical input information often pre-
cludes the application of exposure- and risk-based models
(Egeghy et al. 2011; Wetmore et al. 2012). New approach meth-
odologies (NAMs) are being developed to address data gaps in
estimates of emissions (Li and Wania 2016; Tao et al. 2018; van
de Meent et al. 2020), hazard (Gocht et al. 2015; Judson et al.
2010; Tice et al. 2013), exposure (Shin et al. 2015; Wambaugh
et al. 2019), and risk (National Academies of Sciences,
Engineering, and Medicine 2017; Patlewicz et al. 2018; Wetmore
et al. 2015). Notably, a key source of uncertainty in exposure and
risk estimation is uncertainty in chemical use and emission rates
(Arnot et al. 2012; Breivik et al. 2012; Ring et al. 2019; Shin et al.
2015). Tools are being developed to improve the mechanistic
understanding of chemical fate in the socioeconomic system (i.e.,
the technosphere), comprising all activities throughout the chemi-
cal life cycle (e.g., production, industrial processes, use, waste
disposal) (Li and Wania 2016; Li 2020b; van de Meent et al.
2020). Quantitative structure–activity relationship (QSAR), quan-
titative structure–property relationship (QSPR), and quantitative
structure–use relationship (QSUR)—collectively referred to as
QSXR—have also been advanced to provide reliable estimates of
physicochemical properties, use function, toxicokinetics, and
environmental end points for a wider spectrum of chemicals
(Arnot et al. 2014; Brown et al. 2019; Mansouri et al. 2018; Papa
et al. 2014, 2018; Phillips et al. 2017). Regulatory agencies are
considering the incorporation of NAMs in formal decision-
making contexts (ECHA 2016b; Health Canada 2021; Kavlock
et al. 2018; U.S. EPA 2018). Developing and evaluating NAMs
is critical to advancing chemical assessments and fostering confi-
dence in their applications.

Herein we introduce and evaluate a holistic and mechanistic
chemical exposure and risk estimation framework named
PROTEX-HT that characterizes and quantifies a chemical’s jour-
ney from production to ecological and human receptors. The new
PROTEX-HT model consolidates modules for simulating chemi-
cal emissions andmode of release, fate, and transport in representa-
tive indoor and natural environments, food web bioaccumulation
in aquatic and terrestrial organisms, and exposures and potential
risks to a range of representative ecological receptors and humans.
PROTEX-HT is parameterized here with QSXR, which facilitates
the operation of the system providing a multitude of chemical eval-
uation and management data based on only two pieces of chemical
information, that is, tonnage (production or consumption) and mo-
lecular structure [e.g., simplifiedmolecular-input line-entry system

notation (Weininger 1988)]. The use of QSXR predictions enables
HT screening-level evaluations of existing and premanufacture
chemicals. In this work, we apply PROTEX-HT to 95 organic
chemicals commercialized in the United States and evaluate its
performance by comparing model predictions with environmental
monitoring and biomonitoring data. We also showcase how
PROTEX-HT can guide decision-making for various chemical
management objectives.

Methods

Overview of PROTEX-HT
Figure 1 depicts how PROTEX-HT integrates chemical releases
frommultiple stages in the chemical life cycle, fate, and transport
in multimedia environments and exposure to ecological receptors
and humans through multiple routes. To realize this integrative
framework, PROTEX-HT combines the substance flow analysis
model Chemicals in Products–Comprehensive Anthropospheric
Fate Estimation (CiP-CAFE) (Li and Wania 2016; Li 2020a),
the natural environmental fate and exposure model [Risk
Assessment, IDentification And Ranking (RAIDAR)] (Arnot and
Mackay 2008), and the indoor fate and consumer exposure model
RAIDAR-Indoor and Consumer Exposure (ICE) (Li et al.
2018c). Text S1, “Description of components in PROTEX-HT”
in the Supplemental Material, presents detailed information on
the structure, configuration, and rationale of each model.

Provided with user-supplied chemical tonnages (annual pro-
duction or consumption volume in metric tons per year), CiP-
CAFE (version 2.0) calculates chemical flows between main life
cycle stages and waste disposal practices, as well as rates of emis-
sions therefrom. Specifically, CiP-CAFE characterizes an arche-
typal supply chain: After synthesis (“production” in Figure 1), a
chemical is distributed between up to five end-use applications
(indicated by five arrows in Figure 1), designated by their distribu-
tion ratios, for potential further use in manufacturing formulations
and preparations (“industrial processes”), producing products read-
ily used in professional and residential settings (“instantaneous
use”), and articles with long service lives (“in service”). Wastes are
generated from these life cycle stages, and along with end-of-life
waste, treated inwaste disposal facilities (engineered landfill, dump-
ing and simple landfill, wastewater treatment, and so on).

Emissions occurring outdoors (outdoor air, surface water, and
soil) are assigned to RAIDAR (version 3.0), which calculates the
fate and transport of chemicals in an archetypal temperate North
American ecosystem (Figure 1). RAIDAR predicts chemical con-
centrations in different far-field environmental compartments
(air, surface water, soil, and sediment) by mechanistically quanti-
fying various advection, diffusion, and reaction processes. It also
quantifies chemical bioaccumulation and concentrations in a
broad range of representative ecological receptors (plankton,
invertebrates, fish, birds, and mammals) and agricultural organ-
isms (root and foliage vegetation, cows, pigs, chickens, and so
on) using mechanistic toxicokinetic models. These agricultural
organisms constitute food for the human population parameter-
ized here with the anthropometric, physiological, dietary, and ac-
tivity data representative of a North American male adult.
RAIDAR calculates the daily human exposure rate [in nanograms
chemical per kilogram body weight (BW) per day] through inha-
lation, consumption of drinking water, and dietary ingestion.

Emissions occurring indoors (indoor air and direct applications
to the body) are assigned toRAIDAR-ICE (version 1.5), which cal-
culates the fate and transport of chemicals in an archetypal North
American home (Figure 1). RAIDAR-ICE predicts chemical con-
centrations in different near-field compartments (indoor air, foam
furniture, carpet, flooring, hard surfaces, and the dust thereon, and
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so on.) by mechanistically quantifying advection, diffusion, and
reaction processes. The same representative human in RAIDAR is
included in RAIDAR-ICE. RAIDAR-ICE calculates the daily ex-
posure rate (in nanograms chemical per kilogram BW per day)
through inhalation of indoor air, mouthing-mediated ingestion
(i.e., ingestion of chemicals through the hand- and object-to-mouth
contact) (Li et al. 2021), and dermal absorption. RAIDAR-ICE
also calculates chemical fluxes ventilated from indoors to out-
doors, which are added to the outdoor emissions for RAIDAR
modeling (see Text S1, “Description of components in PROTEX-
HT” in the SupplementalMaterial).

The predicted route-specific exposure rates by the two models
can be aggregated to give the overall daily exposure rate. Both
models include a one-compartment physiologically based model
capturing key pharmacokinetic/toxicokinetic processes to convert
the external daily exposure rate to internal doses, such as lipid-
normalized whole-body concentrations, blood and urine concen-
trations. The prediction of biological concentrations provides
opportunities for comparisons with biomonitoring data. RAIDAR
and RAIDAR-ICE are steady-state models, requiring a time-
invariant emission rate as input. We, therefore, parameterized
CiP-CAFE with constant tonnages and ran the model for 100 y [a
sufficiently long time for most long-lived articles (Li and Wania

2018)] to generate steady-state emission rates compatible with
the RAIDAR and RAIDAR-ICE input requirement although the
original version of CiP-CAFE supports predicting dynamic
changes in chemical flows and emissions for up to 200 y if sup-
plied with time-variant chemical tonnages.

Case Study with 95 Synthetic Organic Chemicals
We predicted the concentrations of 95 synthetic organic chemicals
in various media of an archetypal environment in the United States
as well as exposure rates to the general population. The selected
chemicals belong to different functional use categories and include
68 biocides, 4 intermediate and/or raw chemicals, 4 construction
material additives, 4 solvents, 8 plasticizers, and 7 personal care
product ingredients. They also have diverse physicochemical, bio-
logical, and toxicological properties (Excel Table S1). The list con-
tains several legacy persistent organic pollutants restricted or
banned in the United States, such as organochlorine biocides (e.g.,
hexachlorobenzene, and a-, b-, and c-hexachlorocyclohexanes).
The list also contains four polycyclic aromatic hydrocarbons
(PAHs) as constructionmaterial additives because they are synthe-
sized industrially and used in sealing and coating products for con-
struction, road, and pavement according to the Toxic Substances

Figure 1. Schematic overview of PROTEX-HT and the three main modular components: CiP-CAFE [converting chemical tonnages to emission rates (Li and
Wania 2016; Li 2020a)], RAIDAR and RAIDAR-ICE [converting emission rates to concentrations and exposures (Arnot and Mackay 2008; Li et al. 2018c)].
Also indicated are life cycle and waste treatment stages considered in CiP-CAFE and environmental and biological compartments. Arrows indicate some of the
flow of chemicals. For details of the modules, see Text S1, “Description of components in PROTEX-HT” in the Supplemental Material. Note: CiP-CAFE,
Chemicals in Products–Comprehensive Anthropospheric Fate Estimation; HT, high throughput; ICE, Indoor and Consumer Exposure; PROTEX, PROduction-
To-EXposure; RAIDAR, Risk Assessment, IDentification And Ranking.
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Control Act (TSCA)’s 2016 Chemical Data Reporting (CDR)
(U.S. EPA 2020). However, their reported tonnages do not include
the quantities generated unintentionally through combustion.

These chemicals were selected because their nationally repre-
sentative exposure rates had previously been inferred from biomo-
nitoring data in the National Health and Nutrition Examination
Survey (NHANES) (Wambaugh et al. 2014) and hence were avail-
able for evaluating PROTEX-HT’s performance. The evaluation
was based on inferred exposure rates of the total population (males
and females combined), in accordance with the practice in SEEM
(Ring et al. 2019; Wambaugh et al. 2013, 2014); in fact, no signifi-
cant differences were found between the total population and either
males or females (Wambaugh et al. 2014).We compared the aggre-
gate exposure rates predicted by PROTEX-HT (central-tendency
estimates based on the central tendency of chemical tonnage) with
the medians of the NHANES-inferred exposure rates. The per-
formance of PROTEX-HT was quantified using the coefficient of
determination (R2; calculated withMicrosoft Excel), as well as the
discrepancy between PROTEX-HT–predicted and NHANES-
inferred exposure rates.

In addition to exposure rates, PROTEX-HT predicted chem-
ical concentrations in environmental compartments and ecolog-
ical receptors, whole-body concentrations in humans, as well as
health risks for the 95 chemicals. We analyzed the correlation
between the exposure rate, whole-body concentration, health
risk, and chemical tonnage using Spearman’s rank-order corre-
lation coefficient (Spearman’s q) calculated with Microsoft
Excel.

Automated Parameterization of PROTEX-HT
The three primary modules of PROTEX-HT require inputs of
chemical-specific information on properties and use function.
Table 1 gives a complete list of key parameters. These parameters
were estimated from the molecular structure using state-of-the-art
QSXRs if experimentally determined values were not available.
Following the Organisation for Economic Co-operation and
Development’s Guidance Documents on the Validation of QSAR
Models (OECD 2007), we selected QSXR models with a) clearly
defined predicted end points that share the same meaning as

Table 1. Key parameters required (indicated by “X”) by the PROTEX-HT components: CiP-CAFE (Li and Wania 2016; Li 2020a), RAIDAR (Arnot and
Mackay 2008), and RAIDAR-ICE (Li et al. 2018c).

Parameter CiP-CAFE RAIDAR RAIDAR-ICE QSXR predictions

Molar mass X X X —
Molar volume X — — ACD/Labs (Release 2019.2.1)
Equilibrium partition coefficients (KOW and

KOA)
a

X X X Consensus value (geometric mean) of predictions made with OPEn
Structure-activity/property Relationship App (OPERA) (Mansouri
et al. 2018), poly-parameter linear free energy relationships
(ppLFERs) (Ulrich et al. 2017), and EPI Suite (U.S. EPA 2012)

Acidity/basicity and dissociation constants
(pKa and pKb)

— X — ACD/Labs (Release 2019.2.1)

Air hydroxylation and ozonation rate con-
stants (kOH and kO3)

b
X X X EPI Suite AOPWIN model (U.S. EPA 2012)

Primary biodegradation half-life (HLbiodeg) Regression equations (Arnot et al. 2005, 2012) against outputs from
the EPI Suite BIOWIN models (U.S. EPA 2012)

Degradation half-life in surface water X X — Assumed to be equal to the primary biodegradation half-life, based on
an empirical relationship (Fenner et al. 2005)

Degradation half-life in soil — X — Assumed to be twice the primary biodegradation half-life, based on an
empirical relationship (Fenner et al. 2005)

Degradation half-life in sediment or
waste stock

X X — Assumed to be 10 times the primary biodegradation half-life, based on
an empirical relationship (Fenner et al. 2005)

Whole-body biotransformation half-life in
fish (HLfish)

— X — Consensus value (geometric mean) of predictions made with OPERA
(Mansouri et al. 2018), the Iterative Fragment Selection (IFS)
QSAR (Brown et al. 2012), and the fish biotransformation models
(Papa et al. 2014) implemented in QSARINS-Chem (Gramatica et
al. 2014)

Whole-body biotransformation half-life in
mammals (including humans)
(HLmammal)

— X X Consensus value (geometric mean) of predictions made with IFS
QSAR (Arnot et al. 2014) and the human biotransformation models
(Papa et al. 2018) implemented in QSARINS-Chem (Gramatica et
al. 2014)

Functional use category QSUR (Phillips et al. 2017), corrected based on market information
documented in the U.S. EPA’s Functional Use Database (Isaacs et
al. 2016)

Distribution ratios X — — Parameterized automatically based on the functional use category
(this paper)

Emission, waste, and decomposition
factors

X — — Parameterized automatically based on the functional use category
(this paper)

Lifespan of articlesc X — — Parameterized automatically based on the functional use category
(this paper)

Note: —, not applicable; CiP-CAFE, Chemicals in Products–Comprehensive Anthropospheric Fate Estimation; HT, high throughput; ICE, Indoor and Consumer Exposure; PROTEX,
PROduction-To-EXposure; QSAR, quantitative structure–activity relationship; QSARINS-Chem, quantitative structure–activity relationship–Insubria chemistry; QSUR, quantitative
structure–use relationship; QSXR, collectively, QSPR, QSAR, and QSUR; Risk Assessment, IDentification And Ranking.
aPredictions are for the neutral form if a chemical is ionizable. RAIDAR automatically calculates the fractions of neutral and ionized forms from dissociation coefficients based on the
Henderson-Hasselbalch equation, as well as partition coefficients (also known as distribution ratios) for combined neutral and ionized forms. KAW is calculated as KOW=KOA, that is,
following the thermodynamic triangle.
bHydroxylation half-lives in the outdoor and indoor air are calculated with assumed hydroxyl radical concentration to be 9:7 × 105 molecules=cm3 outdoors and
1:7× 105 molecules=cm3 indoors, respectively. Ozonation half-lives in the outdoor and indoor air are calculated with assumed ozone concentration to be 7× 1011 molecules=cm3 out-
doors and 3:5× 1011 molecules=cm3 indoors, respectively. The overall half-lives in the indoor and outdoor air (HLindoor air and HLoutdoor air) combine the corresponding hydroxylation
and ozonation half-lives.
cRequired only for chemicals in articles (i.e., chemicals used in objects whose functions are determined mainly by their shapes, surfaces, and designs; for details, see Text S1
“Description of components in PROTEX-HT” in the Supplemental Material).

Environmental Health Perspectives 127006-4 129(12) December 2021



the parameters required by the PROTEX-HT components; b)
unambiguous, reproducible model algorithms; c) domains of
applicability covering the majority, if not all, of the case study
chemicals; and d) transparent information on goodness-of-fit,
robustness, and predictivity. Excel Table S1 tabulates the QSXR-
derived parameters for the 95 case study chemicals.

Specifically, well-established QSARs and QSPRs were used
to parameterize the partitioning and reactive properties (Table 1).
The QSUR developed by Phillips et al. (2017) was used to pre-
dict a chemical’s function, that is, its functional role in the end-
use product and/or article applications. The predicted functional
uses were checked individually with market information docu-
mented in the U.S. EPA’s Functional Use Database (Isaacs et al.
2016) if available; corrections were made when misclassification
arose. Each functional use was then matched with 1 of 87 func-
tional use categories defined in CiP-CAFE (Excel Table S2). For
instance, di-n-octyl phthalate [Chemical Abstracts Service
Registry Number (CASRN) 117-84-0] was predicted to be a fra-
grance by the QSUR but corrected to being a plasticizer based on
records in the U.S. EPA’s Functional Use Database, which corre-
sponded to CiP-CAFE’s functional use category “plasticizer”.
Based on the assigned functional use category, CiP-CAFE auto-
matically selected appropriate distribution ratios, by searching a
built-in database documenting the relative likelihood that a func-
tion is found in different end-use applications (Breivik et al.
2012), to split the total chemical tonnage into up to five end-use
applications. For example, 41%, 20%, 4%, and 35% of the total
chemical tonnage of a plasticizer were allocated to polymer/
plastic materials, textiles, electrical/electronic equipment, andmis-
cellaneous use, respectively (Breivik et al. 2012). The distribution
ratios of all 87 functional use categories are tabulated in Excel
Table S2. Meanwhile, for each end-use application, CiP-CAFE
populated the emission, waste, and decomposition factors with
data either collected from official documents or computed from
physicochemical properties by modules built into CiP-CAFE. For
instance, factors for “production,” “industrial processes,” and “in-
stantaneous use” were taken from the SPecific Environmental
Release Categories (SPERC) (Sättler et al. 2012), REACH’s
Environmental Release Categories (ERCs) (ECHA 2016a), and
the European Union’s Technical Guidance Documents on Risk
Assessment (De Bruijn et al. 2002) (ordered from highest to lowest
priority); factors for emissions from “instantaneous use” and “in
service” stages were computed in the EmissionRate module; fac-
tors for “engineered landfilling” and “dumping and simple landfill-
ing” were computed in the Model for Organic Chemicals in
LAndfills (MOCLA) module, and those for “wastewater treat-
ment” were computed in the SimpleTreat module. In addition, for
articles in each end-use application, CiP-CAFE populated the life-
spans of articles, ranging from 2 to 16.8 y, with typical data from
the Lifespan database for Vehicles, Equipment, and Structures
(LiVES) (Murakami et al. 2010).

Text S3, “Applicability domains of QSXR models” in the
Supplemental Material, details the applicability domains of these
QSXRs. Excel Table S3 contains information on which of the
95 case study chemicals fall within the applicability domains of
these QSXRs. The 95 chemicals were all located in the applic-
ability domains of at least one QSXR, and more than 80% of the
chemicals fell within the applicability domains of most QSXRs
(Excel Table S3).

For risk estimation, we also used the conditional toxicity
value QSAR to predict the reference dose, which characterized
the threshold of daily chemical uptake beyond which exposure
can cause observable adverse effects on the function of an ani-
mal’s whole body (i.e., the systemic toxicity) (Wignall et al.
2018). PROTEX-HT characterizes the health risk using a risk

assessment factor, defined as a unitless ratio between the pre-
dicted exposure rate and the reference dose.

Compilation of Chemical Tonnage Data
National chemical tonnages were assembled and curated from
publicly available sources, including the 2016 CDR (given the
highest priority if available), the Estimated Annual Agricultural
Pesticide Use for Counties of the Conterminous United States,
the Crop Protection Research Institute data set, and the U.S.
EPA’s High Production Volume list. Chemicals restricted or
banned in the United States (chlorpyrifos; hexachlorobenzene;
a-, b-, and c-hexachlorocyclohexanes; nitrofen; and pentachloro-
phenol) were assumed to be associated with a tonnage of between
1 and 11.34 metric tons per year; the latter is the minimum
reporting threshold by the 2016 CDR. For details of data compi-
lation and hyperlinks to these data sources, see Text S2,
“Compilation of chemical tonnage data” in the Supplemental
Material. Excel Table S1 documents the assembled and curated
data for PROTEX-HT modeling. In a generic case, we assumed
that 10% of the chemical tonnage is produced and used in the
modeled region (the default 10% rule in risk assessments) (De
Bruijn et al. 2002). This is also consistent with assuming that
10% of the U.S. population lives in the modeled region (see Text
S1, “Description of components in PROTEX-HT” in the
Supplemental Material). All chemical tonnages were expressed
as bins (ranges): The upper and lower bounds were used to gener-
ate the high and low estimates of exposure in this work, whereas
their geometric means (central-tendency estimates) were used for
chemical comparisons and ranking.

Uncertainty Analysis
We analyzed the overall uncertainty associated with the modeled
exposure rate to illustrate how PROTEX-HT predictions were
impacted by the propagation of uncertainties in the quantitative
QSPR/QSAR predictions and the qualitative (classification)
QSUR predictions. First, we assessed the magnitude of variation
in the modeled exposure rate (U; in percentage of central-
tendency estimate) caused by the propagation of inherent uncer-
tainties in the QSPR- and QSAR-predicted partitioning and reac-
tive properties (UIi), using the method proposed by MacLeod
et al. (2002),

U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðS2Ii ×U2
IiÞ

r
(1)

where SIi is the sensitivity of the exposure rate (model output) to
each QSPR andQSAR prediction Ii (model input), calculated by the
percentage change in model output normalized by a 20% change in
each model input (i.e., each input parameter was increased and
decreased by 10%). Here, the sensitivity analysis is done for a hypo-
thetical chemical with amolar mass of 250 g=mol, logKOA of 9, log
kOW of 4, kOH of 2 × 10−11cm3=ðmolecules � sÞ, HLbiodeg of 200 h,
HLfish of 20 h, andHLmammal of 15 h, since these numbers represent
medians of properties of the 95 chemicals investigated here. For
each QSPR or QSAR model, we defined the uncertainty UIi as the
extent to which its predictions deviate from the experimentally
determined values in its validation set, which was quantified using
the root-mean-square-error (RMSE) or standard deviation in its
external validation (see data in Text S4, “Uncertainties in quantita-
tive QSPR and QSAR predictions” in the Supplemental Material).
On the other hand, we performed an additional set of PROTEX-HT
simulations, using the uncorrected QSUR predictions of chemical
functions, to assess the impact of QSUR’s misclassification on the
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modeled exposure rate. We compared the predicted exposure rates
with andwithout corrections for themisclassification.

Results

Evaluation of Model Performance
Figure 2 presents the PROTEX-HT–predicted aggregate exposure
rates for the 95 case study chemicals. The predicted exposure rates
spanned more than six orders of magnitude, from 6:0× 10–4

(p-nitroanisole; CASRN 100-17-4) to 1:6× 103 (benzyl butyl
phthalate; CASRN 85-68-7) nanograms chemical per kilogram
BW per day. These predictions were also compared with exposure
rates inferred from biomonitoring data in the NHANES
(Wambaugh et al. 2014). Figure 2 indicates that our predictions
were in satisfactory agreement with the NHANES-inferred expo-
sure rates, with a coefficient of determination (R2) of 0.59, which
means PROTEX-HT (central-tendency estimates based on the cen-
tral tendency of chemical tonnage) explained 59% of the variance
observed in the medians of NHANES-inferred exposure rates.
PROTEX-HT reproduced themedians of NHANES-inferred expo-
sure rates for 75 chemicals (79% of the 95 chemicals) with a dis-
crepancy smaller than an order of magnitude and for 92 chemicals
(97%) with a discrepancy smaller than two orders of magnitude.
Furthermore, the discrepancy between predicted and NHANES-
inferred exposure rates was largest for the 4 intermediate and/or
raw chemicals (with an RMSE of 2.2 log units) but similar for the
remaining functional use categories (RMSEs of 1.12 log units for
solvents, 0.82 log units for biocides, 0.73 log units for plasticiz-
ers, 0.71 log units for construction material additives, and 0.61
log units for personal care product ingredients). That is, the

model’s performance was not skewed toward certain functional
use categories. Nevertheless, PROTEX-HT substantially over-
predicted exposure to nitrobenzene (CASRN: 98-95-3; 2,320
times), atrazine (CASRN: 1912-24-9; 2,080 times), and 4-amino-
phenol (CASRN: 123-30-8; 117 times) (Figure 2).

The performance of PROTEX-HT was similar to that of the
SEEM3 framework, which is an empirical machine learning
approach that predicts exposure rates using a consensus Bayesian
regression combining multiple model predictions (Ring et al.
2019; Wambaugh et al. 2014). For comparison, Figure S1 shows
the performance of SEEM3 in predicting exposure rates for the
95 chemicals investigated here. SEEM3 succeeded in explaining
58% of the variations observed in the NHANES-inferred expo-
sure rates and in predicting exposure rates for 76 and 89 chemi-
cals with a difference within an order and two orders of magnitude,
respectively. Here, PROTEX-HT predictions were made independ-
ently of NHANES inferences; by contrast, the SEEM3 exposure esti-
mates had been a result of calibration to NHANES inferences and
were not a true external evaluation of the framework. Interestingly,
SEEM3 tended to substantially underestimate (>500 times) human
exposure to persistent legacy biocides that have long been phased out,
such as a-, b-, and c-hexachlorocyclohexanes (CASRN 608-73-1,
CASRN 319-85-7, and CASRN 58-89-9) and pentachlorophenol
(CASRN 87-86-5). This discrepancy had been hypothetically attrib-
uted to the uncertainty associated with the use of production volumes
instead of actual emission rates in SEEM3 (Ring et al. 2019) because
persistence makes these biocides maintain disproportionately high
levels in the environment relative to their production volumes. This
process was captured in the mechanistic PROTEX-HT framework,
which gave predictions in satisfactory (∼ 5 to 10 times)

Figure 2. Comparison of aggregate exposure rates predicted by PROTEX-HT (central-tendency estimates based on the central tendency of chemical tonnage,
and ranges derived from the high and low estimates of chemical tonnage) and inferred by Wambaugh et al. (2014) from human biomonitoring data in the U.S.
National Health and Nutrition Examination Survey (NHANES) (medians and 95% confidence intervals). The dashed diagonal line represents perfect agreement
between predictions and inferred values; the dotted lines represent a difference of two orders of magnitude. Chemicals with a difference of greater than two
orders of magnitude are identified by Chemical Abstracts Service Registry Number. For the numerical values of the PROTEX-HT predictions, see Excel Table
S4. Note: BW, body weight; HT, high throughput; PROTEX, PROduction-To-EXposure.
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agreement with NHANES inferences, given that PROTEX-HT’s
steady-state assumption considered the accumulation of chemi-
cal mass in the environment.

The most prominent advantage of PROTEX-HT is that it can
simulate chemical behavior and fate in a stepwise manner through-
out the PROTEX continuum. For instance, PROTEX-HT–
predicted concentrations in various environmental media (e.g.,
indoor dust, indoor air, outdoor air) and ecological receptors (e.g.,
fish, beef cattle) can be compared with environmental and food
monitoring data as a means of evaluating modeling performance
(Table S1). Overall, for most chemicals, PROTEX-HT predictions
fell well into the measured concentration ranges gathered from
published studies (Table S1). An expected exception is bisphenol-
A (raw material for polycarbonate plastic products), for which
PROTEX-HT predictions were orders of magnitude lower than
measurements, notably in the indoor environment (Table S1), pri-
marily because PROTEX-HT assumed that raw materials were
subject to complete reaction and do not appear in consumer prod-
ucts. PROTEX-HT also slightly underpredicted the concentrations
of PAHs, primarily because unintentional combustion sources
were omitted.

Despite PROTEX-HT’s encouraging performance, uncertain-
ties in model predictions need to be acknowledged. Tables 2
and 3 show that the propagation of uncertainties inherent in the
QSPRs and QSARs used to estimate partitioning and reactive
properties generally caused an overall uncertainty of an order of
magnitude (i.e., <1,000%) in the modeled rates of human expo-
sure, which is smaller than the 95% confidence intervals of
NHANES-inferred exposure rates of all the 95 chemicals (∼ 6
orders of magnitude; vertical error bars in Figure 2). As such, the
overall uncertainty did not prevent PROTEX-HT from distin-
guishing exposure rates between chemicals. However, when
chemicals were released predominantly to indoor air, the esti-
mated rates of mouthing-mediated ingestion were highly uncer-
tain (up to a factor of ∼ 30). Compared with reaction half-lives,

uncertainties in partition coefficients made a greater contribution
to the overall uncertainty in exposure estimates. On the other
hand, the QSUR model used in this work misclassified the func-
tional use categories of certain chemicals, leading to the use of
inappropriate emission, waste, and decomposition factors, life-
spans of articles, and distribution ratios and thus causing biases
in exposure estimates. As Figure 3 shows, the misclassification
changed the predicted exposure rates by a factor of >5 for 37
chemicals. Notably, the misclassification led to a severe overesti-
mation of the exposure rates of nicosulfuron (CASRN 111991-
09-4) and sulfosulfuron (CASRN 141776-32-1), by factors of
368 and 333, respectively. These two biocides were misidentified
as personal care product ingredients. By contrast, the misclassifi-
cation exerted limited impacts on the exposure rates of other
chemicals, for example, pyrene (CASRN 129-00-0; with a differ-
ence of a factor of 2), which is a construction material additive
misidentified as a colorant in the QSUR prediction.

Application 1: Ranking and Prioritizing Chemicals
PROTEX-HT supported the evaluation of chemicals based on a
diverse array of metrics to meet requirements in various expo-
sure- and risk-based assessment contexts. To illustrate some of
the opportunities that PROTEX-HT provides, we continued to
use the 95 case study chemicals. Figure 4 ranks these chemicals
based on predicted exposure rate (in nanograms chemical per
kilogram BW per day; Figure 4a), whole-body concentration (in
nanograms chemical per gram lipid; Figure 4b), a risk assessment
factor (RAF, unitless; Figure 4c), and regional chemical tonnage
(in metric tons per year; Figure 4d). Spearman’s q quantifies the
similarity between rankings (Table S2): A higher Spearman’s q
indicates that two rankings are more consistent. An overall con-
clusion drawn from the inspection of Figure 4 is that rankings
and subsequent priority setting were sensitive to the evaluation
metrics being considered.

A comparison between Figure 4a and 4b indicates that the expo-
sure rate was an acceptable surrogate for whole-body concentration
in human risk assessments, with a Spearman’s q= 0.88 (Table S2),
at least for these 95 chemicals. Compared with the predicted expo-
sure rate (Figure 4a), the predicted whole-body concentration had a
wider range, spanning over seven orders of magnitude (Figure 4b).

Table 2. Uncertainties associated with the modeled exposure rates (in per-
centage of central-tendency estimate) via exposure routes from the far-field
environment, as a result of the propagation of uncertainties in partitioning
(equilibrium partition coefficients) and reactive properties (air hydroxylation
rate constant, primary biodegradation half-life, and whole-body biotransfor-
mation half-lives in fish and mammals) predicted by the QSARs and QSPRs
adopted by PROTEX-HT, arrayed by assumed mode of entry.

Mode of entry
Input

parameter
Inhalation of
outdoor air (%)

Drinking
ingestion (%)

Dietary
ingestion (%)

100% to air Overall 58 418 352
KOA 27 60 179
KOW 3 10 143
kOH 27 27 27
HLbiodeg 0 321 0
HLfish 0 0 0
HLmammal 0 0 3

100% to water Overall 1,106 326 596
KOA 750 0 2
KOW 13 10 175
kOH 27 0 0
HLbiodeg 317 316 316
HLfish 0 0 102
HLmammal 0 0 0

100% to soil Overall 1,144 1,257 1,048
KOA 248 1 4
KOW 548 529 717
kOH 27 0 1
HLbiodeg 322 727 326
HLfish 0 0 0
HLmammal 0 0 0

Note: HT, high throughput; PROTEX, PROduction-To-EXposure; QSAR, quantitative
structure–activity relationship; QSPR, quantitative structure–property relationship.

Table 3. Uncertainties associated with the modeled exposure rates (in per-
centage of central-tendency estimate) via exposure routes from the near-field
environment, as a result of the propagation of uncertainties in partitioning
(equilibrium partition coefficients) and reactive properties (air hydroxylation
rate constant, primary biodegradation half-life, and whole-body biotransfor-
mation half-lives in fish and mammals) predicted by the QSARs and QSPRs
adopted by PROTEX-HT, arrayed by assumed mode of entry.

Mode of entry
Input

parameter

Inhalation
of indoor
air (%)

Dermal
absorption

(%)

Mouthing-
mediated

ingestion (%)

100% to air Overall 67 889 2,854
KOA 35 738 1,501
KOW 28 141 1,339
kOH 5 10 14
HLbiodeg 0 0 0
HLfish 0 0 0
HLmammal 0 0 0

100% to human skin Overall 121 708 913
KOA 70 405 483
KOW 46 301 428
kOH 4 2 2
HLbiodeg 0 0 0
HLfish 0 0 0
HLmammal 0 0 0

Note: HT, high throughput; PROTEX, PROduction-To-EXposure; QSAR, quantitative
structure–activity relationship; QSPR, quantitative structure–property relationship.

Environmental Health Perspectives 127006-7 129(12) December 2021



The difference between the rankings based on exposure rate and
whole-body concentration was the most remarkable for recalcitrant,
hydrophobic chemicals. A prominent example is hexachloroben-
zene (CASRN118-74-1), ranked second for whole-body concentra-
tion (Figure 4b), despite its low exposure rate (ranked 31 in Figure
4a). Hexachlorobenzene’s persistence prevents extensive biotrans-
formation (whole-body biotransformation half-life of 2:5× 104 h
for a 70-kg person; Excel Table S1), and its hydrophobicity (log
KOW =5:73; Excel Table S1) prevents efficient excretion through
fecal egestion and urination (Li et al. 2019; Zhang et al. 2021). This
was also the case for other persistent organic pollutants, such as a-,
b-, and c-hexachlorocyclohexane (ranked 12 to 14 for whole-body
concentration vs. 39 to 43 for exposure rate). By contrast, rankings
based on whole-body concentration and exposure rate were closer
for chemicals subject to relatively fast elimination, such as phtha-
lates (plasticizers) and parabens (chemicals in personal care
products).

Figure 4c shows that the calculated RAFs were all <1, indi-
cating no unacceptable health impacts posed on the general
U.S. population based on the assessment end point selected
here. The difference between rankings in Figure 4a and 4c, with
a Spearman’s q= 0.59 (Table S2), largely reflects the variation
in reference dose. More potent chemicals may possess a high
ranking even if the exposure rate is relatively low. For instance,
ethyl p-nitrophenyl phenylphosphorothioate (EPN; CASRN
2104-64-5) had the lowest reference dose (highest toxicity) of
0:00001 milligrams chemical per kilogram BW per day among
the investigated chemicals (Excel Table S1), which elevated its
ranking from 68 for the exposure rate to 7 for RAF. On the
other hand, a chemical with a high exposure rate may not neces-
sarily have a high RAF. For instance, dibutyl phthalate

(CASRN 84-74-2) had a relatively high reference dose (low
toxicity) of 0:1 milligrams chemical per kilogram BW per day;
it was ranked 80 for RAF despite a relatively high ranking of 34
for exposure rate.

Application 2: Setting Chemical-Specific Maximum
Allowable Tonnage for Tailored Risk Estimation
The CiP-CAFE module in PROTEX-HT calculated an emission-
to-tonnage ratio, namely, the percentage of the regional chemical
tonnage (geometric mean) entering the environment (Figure 5a).
Overall, the emission-to-tonnage ratio was rather low for chemi-
cals used in industries, such as intermediates and/or raw chemicals
(∼ 5%), and high for chemicals with nonpoint open use, such as
biocides and personal care chemicals (∼ 50–100%). This ratio is
often related to measures of emission control: Chemicals used in
industries are often subject to end-of-pipe treatments to reduce or
minimize emissions, whereas evaporative emissions of biocides
are largely passive and difficult to control. Furthermore, the
emission-to-tonnage ratio varied substantially between plasticiz-
ers, mostly depending on their propensity for evaporation to air: di-
n-octyl phthalate (CASRN 117-84-0), di(2-ethylhexyl) phthalate
(CASRN 117-81-7), and dicyclohexyl phthalate (CASRN 84-61-
7) had low emission-to-tonnage ratios because of their high KOA
(>1011), whereas the rest of the plasticizers had high emission-to-
tonnage ratios (>80%).

Likewise, PROTEX-HT calculated an exposure-to-tonnage ra-
tio (Figure 5b), that is, the fraction of the regional chemical tonnage
(geometric mean) taken in by the entire population living in the
modeled region (expressed in parts per million because the num-
bers are small). The exposure-to-tonnage ratio is conceptually

Figure 3. Comparison of aggregate exposure rates predicted by PROTEX-HT (central-tendency estimates based on the central tendency of chemical tonnage,
and ranges derived from the high and low estimates of chemical tonnage) with corrected and uncorrected QSUR-derived functional information. The dashed di-
agonal line represents perfect agreement between two sets of predictions; the dotted lines represent a difference of two orders of magnitude. Chemicals with a
difference of greater than two orders of magnitude are identified by Chemical Abstracts Service Registry Number. For corrected and uncorrected functional in-
formation, see Excel Table S1. Note: BW, body weight; HT, high throughput; PROTEX, PROduction-To-EXposure; QSUR, quantitative structure–use
relationship.
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Figure 4. PROTEX-HT predicted (a) exposure rates, (b) whole-body concentrations, (c) risk assessment factors, and (d) regional tonnages of 95 synthetic or-
ganic chemicals (identified by their Chemical Abstracts Service Registry Numbers) in the United States, ranked by the geometric means of exposure rates. For
the numerical values of the PROTEX-HT predictions, see Excel Tables S1 and S4. Note: HT, high throughput; PROTEX, PROduction-To-EXposure.
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similar to the intake-to-production ratio previously defined and cal-
culated by Nazaroff et al. (2012) based on biomonitoring and sur-
veyed manufacturing data. Table S3 shows that for nine chemicals
discussed by Nazaroff et al. (2012), the two approaches gave fairly
consistent estimates, with discrepancies of generally less than a
factor of 10. As shown in Figure 5b, the exposure-to-tonnage ratio

was low for intermediates and/or raw chemicals (∼ 10–100 ppm),
moderate for biocides (∼ 100–33,000 ppm) and plasticizers
(∼ 400–13,000 ppm), and high for chemicals with direct applica-
tion onto the human skin, such as chemicals in personal care
products (∼ 6,000–170,000 ppm). This variability is partially
explained by functional use categories having different emission-

Figure 5. PROTEX-HT–predicted (a) emission-to-tonnage ratios, (b) exposure-to-tonnage ratios, and (c) maximum allowable tonnages of 95 synthetic organic
chemicals (identified by their Chemical Abstracts Service Registry Numbers) in the United States, categorized by functional category and ranked by the emission-
to-tonnage ratio. For the numerical values of the PROTEX-HT predictions, see Excel Table S5. Note: HT, high throughput; PROTEX, PROduction-To-EXposure.
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to-tonnage ratios (Figure 5a). Another reason is that chemicals in
different use categories may differ in their potential to enter the
body. For example, chemicals used indoors typically have nota-
bly higher intake fractions than chemicals released outdoors
(Zhang et al. 2014). In addition, within each functional use cate-
gory, the exposure-to-tonnage ratio varied (Figure 5b) because of
variability in chemical properties, such as the potential for accu-
mulation in the environment and food webs.

In addition to a forward calculation mode that estimates risks
based on the chemical tonnage, PROTEX-HT can back-calculate
a maximum allowable tonnage for a specific chemical, that is, the
critical quantity beyond which its production and use would
cause unacceptable health risks, for example, based on the refer-
ence dose. Such a backward calculation sets a practical cap in
chemical management, such that regulatory agencies or author-
ities can compare the cap and actual tonnage to estimate the mar-
gin of safety of chemical production and use in a jurisdiction.
The back-calculated maximum allowable tonnages for the
95 chemicals in the modeled region (Figure 5c) spanned seven
orders of magnitude, from 24 metric tons/y (EPN; CASRN 2104-
64-5) to 135million metric tons/y (1,4-dichlorobenzene; CASRN
106-46-7). In general, high maximum allowable tonnages were
found for a) chemicals with a small emission-to-tonnage ratio,
such as intermediate and/or raw chemicals; b) relatively less toxic
chemicals, such as sulfonylurea herbicides like nicosulfuron
(CASRN 111991-09-4), sulfosulfuron (CASRN 141776-32-1),
prosulfuron (CASRN 94125-34-5), and chlorsulfuron (CASRN
64902-72-3), whose reference doses were ranked among the top
15 of the 95 chemicals; and c) chemicals subject to relatively
rapid transformation in the environment, such as phthalates.

Application 3: Providing Mechanistic Insights into the
PROTEX Continuum
Figure 6 shows a breakdown of the estimated emissions by life
cycle stages (Figure 6a), receiving compartments (also referred to
as the mode of entry; Figure 6b), and the dominant exposure
pathways of the general U.S. population to the 95 chemicals
(Figure 6c). In general, the relative importance of emission sour-
ces, receiving compartments, and exposure pathways were highly
dependent on chemical properties and use patterns.

PROTEX-HT predicted that biocides were released mainly
during use in agricultural and hygiene settings (yellow bars in
Figure 6a). Because the use of biocides in hygiene settings
resulted in their occurrence in wastewater, wastewater treatment
contributed up to another 40% of the total emission of biocides
(navy bars). This was also the case for chemicals in personal care
products. Intermediate and/or raw chemicals were predicted to be
emitted almost solely during the treatment of industrial waste
(navy bars) because they were eventually converted into other
components and do not appear in final products. Plasticizers,
notably the highly volatile ones, were predicted to be mostly
emitted from consumer goods in service (i.e., in-use stock; light
blue bars). However, emissions from industrial processes may
outweigh those from the in-use phase for less volatile phthalates,
for example, di-n-octyl phthalate (CASRN 117-84-0) and di(2-
ethylhexyl) phthalate (CASRN 117-81-7). Emissions from the in-
use stock (light blue bars) were also the most predominant source
of construction material additives. Finally, solvents were pre-
dicted to be released mainly from industrial activities (pink bars).

The mode of entry of biocides was predicted to be diverse
(Figure 6b): More hydrophilic biocides mostly entered surface
water (pink bars), whereas more hydrophobic ones mainly ended
up in soil (yellow bars). Emissions to surface water (pink bars)
arose mostly from wastewater treatment plant effluent. This trend
is clearly illustrated by comparing the modes of entry of acephate

(CASRN 30560-19-1) and cypermethrin (CASRN 52315-07-8),
which have the smallest and highest KOW among all biocides
investigated here (Figure S2). Wastewater treatment plants
were also predicted to be responsible for the occurrence of inter-
mediate and/or raw chemicals in surface water (Figure 6b).
Plasticizers were mostly released into air: The fraction used in
consumer goods resulted in their release into indoor air (light
blue bars), whereas the fraction released from industrial proc-
esses contributed to their occurrence in outdoor air (red bars).
Construction material additives also mainly entered outdoor air
(red bars). Most chemicals in personal care products were pre-
dicted to be applied directly to human skin (navy bars).

Dietary ingestion was predicted to be the predominant path-
way for human exposure to intermediate and/or raw chemicals
and most biocides (Figure 6c). Dietary ingestion and inhalation
were important for solvents. Dermal absorption was predicted to
be important for chemicals used in household settings, such as
personal care products. Interestingly, the dominant exposure
pathway varied among plasticizers: Less volatile phthalates (e.g.,
di-n-octyl phthalate, CASRN 117-84-0; di(2-ethylhexyl) phthal-
ate, CASRN 117-81-7) tended to be ingested via diet and dust,
whereas more volatile and water-soluble phthalates (e.g., di-
methyl phthalate, CASRN 131-11-3; diethyl phthalate, CASRN
84-66-2) tended to be dermally absorbed and inhaled.

Discussion

Merits of PROTEX-HT
PROTEX-HT succeeded in predicting emissions, fate, exposure,
and risk for the 95 case study chemicals. PROTEX-HT repro-
duced the rates of human exposure to the 95 chemicals inferred
from biomonitoring data in the NHANES (Figure 2), as well as
contamination in various environmental media and ecological
receptors (Table S1). PROTEX-HT predicted the dominant expo-
sure pathways for these chemicals in good agreement with obser-
vations reported in the literature. For instance, PROTEX-HT
predicted that dietary ingestion contributed to 99% of the overall
human exposure to the pesticide chlorpyrifos (CASRN 2921-88-
2), higher than the contributions by inhalation (<1%) and dermal
absorption (<1%) (Figure 6c). This agreed with the finding that
“the major route of chlorpyrifos intake was food ingestion” based
on human biomonitoring data (Buck et al. 2001). PROTEX-HT
also captured the subtle difference in the dominant exposure path-
ways between different plasticizers (Figure 6c), which was con-
sistent with biomonitoring evidence that ingestion of food was
dominant for di(2-ethylhexyl) phthalate, inhalation was important
for dimethyl phthalate, and diethyl phthalate was mostly dermally
absorbed (Wormuth et al. 2006).

PROTEX-HT has three major advantages in applications in
HT screening-level evaluations of chemicals. First, the modular
and integrative nature lends PROTEX-HT great versatility and
flexibility in various exposure and risk assessment contexts.
PROTEX-HT’s components can be run and upgraded either sepa-
rately or jointly to best fit the purpose of a specific assessment
(e.g., indoor vs. outdoor, ecological receptors vs. humans).
Application 1 shows that PROTEX-HT’s modular nature pro-
vides opportunities for the incremental and transparent evaluation
of the predictions throughout the production to dose continuum.
PROTEX-HT consolidates key components identified in the
Aggregate Exposure Pathway framework (Teeguarden et al.
2016; Thayer et al. 2012) and embodies the systems-based
approach advocated by the U.S. National Academy of Sciences
(NRC 2012). In addition, because PROTEX-HT includes both
humans and a broad range of ecological receptors (for details see
Text S1, “Description of components in PROTEX-HT” in the

Environmental Health Perspectives 127006-11 129(12) December 2021



Figure 6. Relative importance of emissions from (a) different life cycle stages to (b) different receiving compartments, and (c) exposure through different
routes for 95 synthetic organic chemicals (identified by their Chemical Abstracts Service Registry Numbers) in the United States, categorized by functional cat-
egory and ranked in the same way as in Figure 5. For the numerical values of the PROTEX-HT predictions, see Excel Table S5. Note: HT, high throughput;
PROTEX, PROduction-To-EXposure.
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Supplemental Material), it unites screening-level human and eco-
logical assessment end points through a one-health approach. In
addition, although we appraised health risks using the external
exposure rate in combination with the reference dose that
describes in vivo systemic toxicity, PROTEX-HT’s modular
structure enables pairing the whole-body concentrations with in
vitro bioactivity thresholds for assessments (Turley et al. 2019).
Current work indicates that health risk profiles obtained for the
same list of chemicals with the two approaches may diverge sub-
stantially (Li et al. 2020). PROTEX-HT provides a good opportu-
nity to systematically examine and understand the consistency
between these two approaches.

Second, PROTEX-HT’s mechanistic basis supports chemical-
and population-specific assessments by considering different in-
formation on physicochemical properties, use patterns, exposure
routes, and toxicity. For instance, Application 3 reveals the domi-
nant emission sources, receiving compartments, and exposure
pathways, providing options of different hierarchies for prevent-
ing human exposure to harmful chemicals. Eliminating or reduc-
ing emissions from the predominant source(s) (Figure 6a) is most
proactive at reducing risks; notably, it is inexpensive and simple
to implement if a chemical is still at the design or premarket
stage. If controlling the predominant source(s) is less practical,
then engineering controls could conceivably be implemented to
isolate the sources from the major receiving environmental media
(Figure 6b; e.g., to ensure chemical use only in closed systems),
or to redirect emissions to waste treatment facilities. Finally, if
emissions are inevitable, efforts can be made to minimize human
exposure from the predominant exposure route(s), such as by
removing chemicals from drinking water (Figure 6c). In addition,
process-driven models are more informative, transparent, and
amenable to testing compared with empirical or statistical
approaches usually perceived as a black box. Although this illus-
trative case focused on the exposure of the general U.S. popula-
tion, PROTEX-HT’s mechanistic nature makes it easy to be
reparameterized and tailored to other specific environments and
subpopulations that may be more susceptible to certain exposures
(e.g., children and workers in developing countries).

Furthermore, PROTEX-HT is input parsimonious. With a rea-
sonable approximation of the level of complexity of the modeled
system and the partnership with QSXR techniques, PROTEX-HT
can be applied with a minimal number of input parameters: mo-
lecular structure and chemical tonnage. This clearly facilitates
HT applications for large numbers of chemicals with very limited
or no data and saves time and challenges for obtaining input pa-
rameters required by the models. It is also possible to replace
QSXR predictions with empirical values or professional judg-
ment, if desirable. The application of PROTEX-HT can provide
strategic guidance for systematically developing experimental
and/or (bio)monitoring programs given that PROTEX-HT priori-
tizes chemicals of high concern that can be targeted in these
programs.

Applicability Domain of PROTEX-HT
PROTEX-HT is designed for synthetic organic chemicals; the
use of PROTEX-HT for inorganic substances, metals, and unin-
tentionally generated by-products or transformation products,
and so on is not recommended. PROTEX-HT assumes that the
technosphere and environment reach and maintain a steady-
state, which requires a chemical’s time-to-steady-state (i.e., the
time at which the total amount of a chemical is close to, e.g.,
99% of, the steady-state amount) not to exceed the history of
chemical production or the lifetimes of organisms and humans
(Li 2020b). Chemicals with a rapid temporal change in tonnage
should not be simulated on PROTEX-HT without considering

the implications of the steady-state calculations. Further,
PROTEX-HT assumes chemicals to be well mixed within ho-
mogeneous environmental compartments in a region, making it
less suitable for chemicals with extremely rapid loss from a
compartment [e.g., chemicals with mass loss more than 25% of
the mass in a compartment (see Warren et al. 2009)] and for
chemicals that are only released from a single point source.
Chemicals outside the above applicability domain will be
flagged to allow users to determine and evaluate the reliability
of PROTEX-HT predictions. PROTEX-HT’s applicability
domain is also limited by the combination of applicability domains
of the QSXRs implemented in PROTEX-HT. However, PROTEX-
HT’s modular structure allows users to integrate other QSXRs or
empirical data if a chemical falls outside the applicability domains
of all QSXRs used here.

Reflection on the Use of Chemical Tonnage in Exposure and
Risk Assessments
In Application 1, the comparison between chemical rankings
based on exposure and risk indicators (Figure 4; Table S2)
reveals that high chemical tonnage does not necessarily result in
high exposure rates (Spearman’s q= 0.63), whole-body concen-
trations (Spearman’s q= 0.52), or health risks (Spearman’s q=
0.48). This finding implies that high production volume (HPV)
chemicals are not always of high concern. For example,
4-(1,1,3,3-tetramethylbutyl) phenol (CASRN 140-66-9) is an
HPV chemical (ranked 6 in chemical tonnage; Figure 4d) that
posed minimal risks to the regional population (ranked 64 in
RAF; Figure 4c). This is because only a minuscule fraction of
4-(1,1,3,3-tetramethylbutyl) phenol was released into the envi-
ronment (Figure 5a). Therefore, it may not be appropriate to use
chemical tonnage as a surrogate to prioritize or regulate chemi-
cals. Our finding echoes earlier findings that “chemical tonnages
reported to be manufactured or imported played a limited role
when determining the potential for overall general human popula-
tion exposure” (Bonnell et al. 2018).

Nevertheless, it is not feasible to abandon the use of chemi-
cal tonnage in regulatory practices given that chemical tonnage
is readily measurable, actionable, and verifiable and becomes a
part of information requirements in chemical laws and regula-
tions worldwide. One-size-fits-all thresholds, such as the HPV
criteria implemented in many countries, may lead to inappropri-
ate over- or underprotection of human and ecological health.
An advisable alternative is to set chemical- and population-
specific caps for tonnage allowed for production or use in a ju-
risdiction. Application 2 exemplifies the consideration of varia-
bilities in chemical use, toxicity, and properties to derive
chemical- and population-specific maximum allowable tonnage.
Furthermore, if the maximum allowable tonnage of each region
is summed, one may estimate the total cap of chemical tonnage
in the globe, which may be viewed as a planetary boundary for
a given substance (Persson et al. 2013).

Compared with chemical tonnage, reliable estimates of emis-
sion rates play a more important role in determining exposure
and risks. Because emission information is often missing in regu-
latory practices, chemical tonnages are often used instead as a
surrogate to parameterize exposure and risk models. However, as
Figure 5A shows, the emission-to-tonnage ratio was always
smaller than 1, and the extent to which it deviated from 1
depended closely on chemical properties and use patterns. Using
chemical tonnages in models, therefore, overestimated exposure
and risks. In this sense, the emission-to-tonnage ratios estimated
by the CiP-CAFE module can help parameterize other exposure-
and risk-based models.
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Future Directions
At present, the quality and availability of chemical tonnage data
limit PROTEX-HT’s performance. For instance, we used chemical
production volumes as a surrogate for tonnages, without consider-
ing the potential deviation from actual use amounts owing to
import and export, which resulted in a substantial overestimation
in human exposure to certain chemicals, such as 4-aminophenol
(Figure 2). The 2016 CDR (U.S. EPA 2020) indicates that at least
oneU.S.manufacturer exported 283metric tons of 4-aminophenol,
accounting for over 50% of the national annual production volume
(226–454 metric tons/y; Excel Table S1). However, because most
import and export records are labeled as confidential business in-
formation, it is challenging to quantify the extent of deviation of
the actual use amounts from chemical tonnage. Therefore, more
reliable and accurate chemical tonnage data are needed for improv-
ing chemical assessments.

PROTEX-HT would benefit from more reliable, accurate
parameterization brought about by further advancement of QSXR
techniques and databases, as well as other data-mining tools. For
instance, the QSUR used here misclassified the functions of cer-
tain chemicals and led to biased predictions (Figure 3). Such a
bias can be remarkable if the two functions are completely
distinct, for example, in the case that a biocide (with negligible
consumer contact) is misidentified as a personal care product
ingredient (with substantial consumer contact), as demonstrated
by examples of nicosulfuron (CASRN 111991-09-4) and
sulfosulfuron (CASRN 141776-32-1) in the “Results” section
“Evaluation of model performance.” However, the bias can also
be minor if the two functions share similar use patterns and
modes of entry, such as in the case that a construction material
additive is misidentified as a colorant [the example of pyrene
(CASRN 129-00-0) in the section “Evaluation of model perform-
ance”], or a plasticizer is misidentified as a flame retardant.
Before such refined QSURs become available, it is recommended
to check with empirical records in databases, for example, the
Functional Use Database (Isaacs et al. 2016), to confirm the
QSUR predictions before use in PROTEX-HT modeling. In addi-
tion, the current PROTEX-HT applied the same category-based
product information to all chemicals sharing the same functional
use category, without considering intra-category variability. Such
a limitation can be improved by gathering and curating more
detailed market data of products and chemicals.

Future efforts are also encouraged to expand the applicability
domain of PROTEX-HT. First, although PROTEX-HT’s steady-
state predictions represent conservative maximal values and
therefore are acceptable (and even recommended) for screening-
level assessments (De Bruijn et al. 2002), they may substantially
overestimate risks for chemicals persisting in the technosphere
and environment, such as persistent organic chemicals used in
long-life building materials, because these chemicals may take an
unrealistically long time to approach steady-state (Li 2020b).
Such situations warrant higher-tiered and time-variant dynamic
models, such as PROTEX (Li et al. 2018a, 2018b), as necessary.
Second, whereas RAIDAR supports simulations for both neutral
and ionogenic organic chemicals (IOCs), RAIDAR-ICE and CiP-
CAFE simulate processes relating to the neutral form of IOCs
only. Many types of IOCs, such as quaternary ammonium com-
pounds (Li et al. 2020), are also underrepresented in the training
sets of the QSXRs used in this work, although PROTEX-HT per-
formed reasonably well for the nine IOCs among the chemicals
evaluated herein. PROTEX-HT’s modular structure provides
great flexibility to incorporate QSXRs designed specifically for
IOCs if they become available in the future. Last, PROTEX-HT
could be expanded to include more life cycle stages, more envi-
ronmental compartments, and more exposure routes to increase

its versatility. For instance, CiP-CAFE currently does not con-
sider the trace residues of unreacted industrial or raw chemicals
in consumer products, such as bisphenol-A remaining in the man-
ufactured polycarbonate plastic products, which led to a substan-
tial underestimation of indoor bisphenol-A contamination in this
case study (Table S1). Meanwhile, RAIDAR-ICE does not pro-
vide the capability to characterize human exposure to food addi-
tives, food preservatives (e.g., parabens; Table S1), or chemicals
leached from food packaging materials. The inclusion of new
components will complement the current PROTEX-HT modeling
capability and support more complete, tailored assessments for
chemicals of unique concern.

PROTEX-HT is implemented in a user-friendly online plat-
form, the Exposure And Safety Estimation (EAS-E) Suite
(https://www.eas-e-suite.com), to facilitate its application and
evaluation by interested parties. The EAS-E Suite platform pro-
vides default values for chemical information required to parame-
terize PROTEX-HT using the existing QSXRs, and databases
integrated in the system allow users the option of replacing these
parameters with preferred values.
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